Section 1.2

1) Evaluate the function $f(x)=\frac{x^{2}-3 x+2}{x-1}$ at several points near $x=1$ and use the results to estimate the limit

$$
\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x-1}
$$

Next, factor the numerator of $f(x)$ and then graph the function with a hole at $x=1$ to graphically verify the limit you found.
2) Find the limit of $f(x)$ as x approaches 2 where f is defined as

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2} x+1, & x \neq 2 \\
-1, & x=2
\end{array}\right.
$$

Graph the function first.
3) Graph the function

$$
f(x)= \begin{cases}x+1, & x<0 \\ x-1, & x>0\end{cases}
$$

Does $\lim _{x \rightarrow 0} f(x)$ exist? If so, state the limit. If not, explain why not.
4) Graph the function $f(x)=\tan ^{2} x,-\pi<x<\pi$. Does $\lim _{x \rightarrow \frac{\pi}{2}} f(x)$ exist? If so, state the limit. If not, explain why not.
5) Find the limit L. Then find $\delta>0$ such that $|f(x)-L|<0.01$ whenever $0<|x-c|<\delta$.

$$
\lim _{x \rightarrow 2}(3 x+2)
$$

6) Find the limit. Use the $\varepsilon-\delta$ definition to prove that the limit is L.

$$
\lim _{x \rightarrow-3}(2 x+5)
$$

Homework for this section: Read section 1.2. Watch the videos (marked with
in the e-book) and do the tutorials (marked with
 in the e-book).

Do problems $3,11,17,22,23,25,27$, and do \#38 for a challenge. Come to class with at least two questions related to what you read/watched.

